True Lies: Using Proteomics to Assess the Accuracy of Transcriptome-Based Venomics in Centipedes Uncovers False Positives and Reveals Startling Intraspecific Variation in Scolopendra subspinipes
نویسندگان
چکیده
Centipede venoms have emerged as a rich source of novel bioactive compounds. However, most centipede species are commonly considered too small for venom extraction and transcriptomics is likely to be an attractive way of probing the molecular diversity of these venoms. Examining the venom composition of Scolopendra subspinipes, we test the accuracy of this approach. We compared the proteomically determined venom profile with four common toxin transcriptomic toxin annotation approaches: BLAST search against toxins in UniProt, lineage-specific toxins, or species-specific toxins and comparative expression analyses of venom and non-venom producing tissues. This demonstrated that even toxin annotation based on lineage-specific homology searches is prone to substantial errors compared to a proteomic approach. However, combined comparative transcriptomics and phylogenetic analysis of putative toxin families substantially improves annotation accuracy. Furthermore, comparison of the venom composition of S. subspinipes with the closely related S. subspinipes mutilans revealed a surprising lack of overlap. This first insight into the intraspecific venom variability of centipedes contrasts the sequence conservation expected from previous findings that centipede toxins evolve under strong negative selection. Our results highlight the importance of proteomic data in studies of even comparably well-characterized venoms and warrants caution when sourcing venom from centipedes of unknown origin.
منابع مشابه
Stability Test and Quantitative and Qualitative Analyses of the Amino Acids in Pharmacopuncture Extracted from Scolopendra subspinipes mutilans
OBJECTIVES Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period...
متن کاملA taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos
The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Br...
متن کاملAntimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans.
The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) ba...
متن کاملNew approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India
The direct estimate of 46,000 snakebite deaths in India in 2005 (1 for every 2 HIV/AIDS deaths), based on verbal autopsies, renders unrealistic the total of only 47,000 snakebite deaths in the whole world in 2010, obtained indirectly as part of the "Global Burden of Disease 2010" study. Persistent underestimation of its true morbidity and mortality has made snakebite the most neglected of all t...
متن کاملCentipedes subdue giant prey by blocking KCNQ channels
Centipedes can subdue giant prey by using venom, which is metabolically expensive to synthesize and thus used frugally through efficiently disrupting essential physiological systems. Here, we show that a centipede (Scolopendra subspinipes mutilans, ∼3 g) can subdue a mouse (∼45 g) within 30 seconds. We found that this observation is largely due to a peptide toxin in the venom, SsTx, and further...
متن کامل